Numerical solution of neutral functional-differential equations with proportional delays

Mehmet Giyas Sakar

Abstract


In this paper, homotopy analysis method is improved with optimal determination of auxiliary parameter by use of residual error function for solving neutral functional-differential equations (NFDEs) with proportional delays. Convergence analysis and error estimate of method are given. Some numerical examples are solved and comparisons are made with the existing results. The numerical results show that the homotopy analysis method with residual error function is very effective and simple.


Keywords


Homotopy analysis method; Residual error function; Convergence; Neutral functional- differential equation; Proportional delay

Full Text:

PDF

References


Bellen, A., Zennaro, M., Numerical Methods for Delay Differential Equations, Numerical Mathematics and Scientific Computation, The Clarendon Press Oxford University Press, New York, NY, USA, (2003).

Ishiwata, E., Muroya, Y., Rational approximation method for delay differential equations with proportional delay, Appl. Math. Comput. 187 (2) 741-747 (2007).

Ishiwata, E., Muroya, Y., Brunner, H., A super-attainable order in collocation methods for differential equations with proportional delay, Appl. Math. Comput. 198 (1) 227-236 (2008).

Hu, P., Chengming, H., Shulin, W., Asymptotic stability of linear multistep methods for nonlinear delay differential equations, Appl. Math. Comput. 211 (1) 95-101 (2009).

Wang, W., Zhang, Y., Li, S., Stability of continuous Runge-Kutta type methods for nonlinear neutral delay-differential equations, Appl. Math. Model. 33 (8) 3319-3329 (2009).

Wang, W., Li, S., On the one-leg $theta$ methods for solving nonlinear neutral functional-differential equations, Appl. Math. Comput. 193 (1) 285-301 (2007).

Wang, W., Qin, T., Li, S., Stability of one-leg $theta$ methods for nonlinear neutral differential equations with proportional delay, Appl. Math. Comput. 213 (1) 177-183 (2009).

Chen, X., Wang, L., The variational iteration method for solving a neutral functional-differential equation with proportional delays, Comput. Math. Appl. 59 2696-2702 (2010).

Biazar, J., Ghanbari, B., The homotopy perturbation method for solving a neutral functional-differential equation with proportional delays, J. King Saud University-Science 24 33-37 (2012).

Lv, X., Gao, Y., The RKHSM for solving neutral functional-differential equations with proportional delays, Mathematical Methods in the Applied Sciences 36 (6) 642-649 (2009).

Sakar, M. G., Uludag, F., Erdogan, F., Numerical solution of time-fractional nonlinear PDEs with proportional delays by homotopy perturbation method, Appl. Math. Model. 40 (13-14) 6639-6649 (2016).

Liao, S. J., Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman and Hall/CRC Press, Boca Raton, (2003).

Liao, S. J., Notes on the homotopy analysis method: Some definitions and theorems, Commun. Nonlinear Sci. Numer. Simulat. 14 (4) 983-997 (2009).

Alomari, A. K., Noorani, M. S. M., Nazar, R., Solution of delay differential equation by means of homotopy analysis method, Acta Appl. Math. 108 395-412 (2009).

Kumar, S., Rashidi, M. M., New analytical method for gas dynamics equation arising in shock fronts, Computer Physics Communications 185 (7) 1947-1954 (2014).

Abbasbandy, S., Homotopy analysis method for the Kawahara equation, Nonlin. Anal. Real. World Appl. 11 (1) 307-312 (2010) .

Jafari, H. Seifi, S., Homotopy analysis method for solving linear and nonlinear fractional diffusion-wave equation, Commun. Nonlinear Sci. Numer. Simulat. 14 (5) 2006-2012 (2009).

Sakar, M. G., Erdogan, F., The homotopy analysis method for solving time-fractional the Fornberg-Whitham equation and comparison with Adomian's decomposition method, Appl. Math. Model. 37 (20-21) 8876-8885 (2013).

Liao, S. J., An optimal homotopy-analysis approach for strongly nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simulat. 15

-2016 (2010).

Ghanei, H., Hosseini, M. M., Mohyud-Din, S. Y., Modified variational iteration method for solving a neutral functional-differential equation with proportional delays, International Journal of Numerical Methods for Heat and Fluid Flow 22 (8) 1086-1095 (2012).




DOI: http://dx.doi.org/10.11121/ijocta.01.2017.00360

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Mehmet Giyas Sakar

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

footer_771

   ithe_170     crossref_284         ind_131_43_x_117_117  logo_ehost_120    ulakbim_140   proquest_256_x_97_256   zbmath_251_x_86_251 more...