Generalized synchronization of identical and nonidentical chaotic dynamical systems via master approaches

Shko Ali-Tahir, Murat Sari, Abderrahman Bouhamidi

Abstract


The main objective of this work is to discuss a generalized synchronization of a coupled chaotic identical
and nonidentical dynamical systems. We propose a method used to study generalized synchronization in masterslave
systems. This method, is based on the classical Lyapunov stability theory, utilizes the master continuous time
chaotic system to monitor the synchronized motions. Various numerical simulations are performed to verify the
effectiveness of the proposed approach.


Full Text:

PDF

References


Huygens, (1973). Horoloquim oscilatoruim apud f.muquet,parisiis, The pendulum clock, Ames:Iowa state university press, (English translation).

Pecora, L.M., Carroll, T.L. (1990). Synchronization in chaotic systems.Phys Rev Lett., 64, 821-824.

Gonzalez-Miranda, J.M. (2002). Generalized synchronization in directionaly coupled systems with identical individual dynamics. Phys Rev E, 65, 047202-4.

Kocarev, L., Partlitz, U., (1996). Generalized synchronization predictability and equivalence of undirectionally coupled dynamical systems. Phys Rev Lett., 76, 1816-1819.

Du, H.Y., Shi, P., Lu, N. (2013). Function projective synchronization in complex dynamical networks with time delay via hybrid feedback control. Nonlinear Anal. Real., 14, 1182-90.

Jin, X.Z., Yang, G.H. (2013). Adaptive sliding mode fault-tolerant control for nonlinearly chaotic systems against network faults and time- delays. J. Franklin Inst., 350, 1206-1220.

Mei, J., Jiang, M.H., Xu, W.M., Wang, B. (2013). Finite-time synchronization control of complex dynamical networks with time delay. Commun Nonlinear Sci Numer Simulat., 18, 2262-478.

Quiroga, R.Q., Arnhold, J., Grassberger, P. (2000). Learning driver- response relationships from synchronization patterns. Physical Review E, 61, 5142-5148.

Tahir, S.A., (2013). The synchronization of identical Memristors systems via Lyapunov direct method. Applied and Computational Mathematics, 6, 130-136.

Zhou, J.P., Wang, Z., Wang, Y., Kong, Q.K. (2013). Synchronization in complex dynamical networks with interval time-varying coupling delays. Nonlinear Dyn., 72, 2487-2498.

Peitgen, H-O., Ju¨rgens, H., Saupe, D. (1992). Chaos and fractals, Springer-Verlag.

Ahmada, I., Bin Saabana, A., Binti Ibrahima, A., Shahzadb, M., Naveedc, N. (2016). The synchronization of chaotic systems with diff t dimensions bya robust generalized active control. Optik, 127, 8594871.

Hindmarsh, J.L., Rose, R.M. (1984). A model for neuronal bursting using three coupled diff tial equations. Proc. R. Soc. Lond., , 221, 87-102.

Hrg, D. (2013). Synchronization of two Hindmarsh-Rose neurons with unidirectional coupling. Neural Netw., 40, 73-79.




DOI: http://dx.doi.org/10.11121/ijocta.01.2017.00509

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Murat Sari

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

footer_771

   ithe_170     crossref_284         ind_131_43_x_117_117  logo_ehost_120    ulakbim_140   proquest_256_x_97_256   zbmath_251_x_86_251 more...