Modeling the impact of temperature on fractional order dengue model with vertical transmission

Ozlem Defterli

Abstract


A dengue epidemic model with fractional order derivative is formulated to investigate the effect of temperature on the spread of the vector-host transmitted dengue disease. The model consists of system of fractional order differential equations formulated within Caputo fractional operator. The stability of the equilibrium points of the considered dengue model is studied. The corresponding basic reproduction number R_0 is derived and it is proved that if R_0 < 1, the disease-free equilibrium (DFE) is locally asymptotically stable. L1 method is applied to solve the dengue model numerically. Finally, numerical simulations are also presented to illustrate the analytical results showing the influence of the
temperature on the dynamics of the vector-host interaction in dengue epidemics.


Keywords


Fractional operators; stability of the equilibria; dengue epidemics; temperature effect

Full Text:

PDF

References


World Health Organization(WHO). (2019). Dengue Situation Update [on-line]. Available from: https:www.who.int/westernpacific/emergencies/surveillance/dengue [Accessed August2019]

World Health Organization(WHO). (2019). Dengue and Severe Dengue [on-line]. Available from: https:www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue [Accessed June2019]

United States Environmental Protection Agency(EPA). (2019). MosquitoLife Cycle [online]. Available from:https:www.epa.gov/mosquitocontrol/mosquito-life-cycle [Accessed July 2019]

Chowell, G., Diaz-Duenas, P., Miller, J.C., Alcazervelazco, A., Hyman, J.M., Fenimore, P.W., & Chavez, C. (2007). Estimation of the reproduction number of dengue fever from spatial epidemic data. Mathematical Biosciences, 208, 571-589.

Derouich, M., & Boutayeb, A. (2006). Dengue fever: Mathematical modelling and computer simulation. Applied Mathematics and Compu- tation, 177, 528-544.

Dietz, K. (1974). Transmission and control of arbo virus diseases. SIAM, 975, 104-21.

Esteva, L., & Vargas, C. (1998). Analysis of dengue transmission model. Mathematical Biosciences, 150(2), 131-51.

Estweva, L., & Yang, H. (2005). Math- ematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique. Mathematical Biosciences, 198(2), 132-47.

Garba, S.M., Gumel, A.B., & Abu Bakar, M.R. (2008). Backward bifurcations in dengue transmission dynamics. Mathematicalv Biosciences, 215(1), 11-25.

Thome, R.C., Yang, H.M., & Esteva, L. (2010). Optimal control of Aedes aegypti mosquitoes by the sterile insect technique and insecticide. Mathematical Biosciences, 223(1), 12-23.

Pinho, S.T.R., et al. (2010). Modelling the dynamics of dengue real epidemics. Philo- sophical Transactions of The Royal Society, 368, 5679-5693.

Sardar, T., Rana, S., & Chattopadhyay, J. (2015). A mathematical model of dengue transmission with memory. Communnications in Nonlinear Science and Numerical Simulation, 22(1), 511-525.

Stanislavsky, A. (2000). Memory eects and macroscopic manifestation of randomness. Physical Review E, 61(5), 4752{4759.

Syafruddin, S., & Noorani, M.S.M. (2012). SEIR model for transmission of dengue fever in Selangor Malaysia. International Journal of Modern Physics: Conference Series, 9, 380-389.

Abdelrazec, A., Belair, J., Shan, C., & Zhu, Y. (2016). Modeling the spread and control of dengue with limited public health resources. Mathematical Biosciences, 271, 136-145.

Andraud, M., Hens, N., Marais, C., & Beutels, P. (2012). Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches. PloS One, 7(11), e49085.

Robert, Michael A., Christoerson, R.C., Weber, P.D., & Wearing, H.J. (2019). Temperature impacts on dengue emergence in the United States: Investigating the role of sea- sonality and climate change. Epidemics, 28, UNSP 10034.

Alto, B., & Bettinardi, D. (2013). Temperature and dengue virus infection in mosquitoes: Independent eects on the immature and adult stages. The American Journal of Tropical Medicine and Hygiene, 88, 497-505.

Taghikhani, R., & Gumel, A.B. (2018). Mathematics of dengue transmission dynamics: Roles of vector vertical transmission and temperature

uctuations. Infectious Disease Modelling, 3, 266-292.

Chen, S.C., & Hsieh, M.H. (2012). Modeling the transmission dynamics of dengue fever: Implications of temperature eects. Science of the Total Environment, 431, 385-391.

Yang, H.M., Macoris, M.L.G., Galvani, K.C., Andrighetti, M.T.M., & Wanderley, D.M.V. (2009). Assessing the eects of temperature on dengue transmission. Epidemiology & Infection, 137(8), 1179-1187.

Hamdan, N.I., & Kilicman, A. (2018). A fractional order SIR epidemic model for dengue transmission. Chaos, Solutions and Fractals, 114, 55{62.

Ozalp, N., & Demirci E. (2011). A fractional order SEIR model with vertical transmission. Mathematical and Computer Modelling, 54(1-2), 1{6.

Qureshi, S., Yusuf, A., Shaikh, A.A., & Inc, M. (2019). Transmission dynamics of varicella zoster virus modeled by classical and novel fractional operators using real statistical data. Physica A: Statistical Mechanics and its Applications, 534, 122149.

Qureshi, S., & Yusuf, A. (2019). Fractional derivatives applied to MSEIR problems: Comparative study with real world data. The European Physical Journal Plus, 134 (4), 171 (13 pages).

Pooseh, S., Rodrigues, H.S., & Torres, D.F.M. (2011). Fractional derivatives in dengue epidemics. In: T.E. Simos, G. Psihoyios, C. Tsitouras and Z. Anastassi, eds. Numerical Analysis and Applied Mathematics, American Institute of Physics, Melville, 739-742.

Diethelm, K. (2013). A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dynamics, 71, 613-619.

Qureshi, S., & Atangana, A. (2019). Mathematical analysis of dengue fever outbreak by novel fractional operators with eld data. Physica A, 526, 121127.

Jajarmi, A., Arshad, S., & Baleanu, D. (2019). A new fractional modelling and control strategy for the outbreak of dengue fever. Physica A: Statistical Mechanics and its Applications, Volume 535, 122524.

Samko, S.G., Kilbas, A.A., & Marichev, O.I. (1993). Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York.

Civil Aairs Bureau, Kaohsiung city government. Available from [online]: http:cabu.kcg.gov.tw/cabu2/statis61B2.aspx[Accessed December 2011]

Adams, B., & Boots, M. (2010). How important is vertical transmission in mosquitoes for the persistence of dengue? Insights from a mathematical model. Epidemics, 2, 1-10.

Joshi, V., Mourya, D.T., & Sharma, R.C. (2002). Persistence of dengue-3 virus through transovarial transmission passage in successive generations of Aedes aegypti mosquitoes. American Journal of Tropical Medicine and Hygiene, 67(2), 158-61.

Li, C., & Zeng, F. (2013). The nite dierence methods for fractional ordinary differential equations. Numerical Functional Analysis and Optimization, 34(2), 149-79.




DOI: http://dx.doi.org/10.11121/ijocta.01.2020.00862

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Ozlem Defterli

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

footer_771

   ithe_170     crossref_284         ind_131_43_x_117_117  Scopus  EBSCO_Host    ULAKBIM    PROQUEST   ZBMATH more...