The problem with fuzzy eigenvalue parameter in one of the boundary conditions

Hülya Gültekin Çitil

Abstract


In this work, we study the problem with fuzzy eigenvalue parameter in one of the boundary conditions. We find fuzzy eigenvalues of the problem using the Wronskian functions \underline{W}_{\alpha }\left( \lambda \right) and \overline{W}
_{\alpha }\left( \lambda \right). Also, we find eigenfunctions associated with eigenvalues. We draw graphics of eigenfunctions.


Full Text:

PDF

References


Irkin, R., Yılmaz Ozgur, N., Tas, N. (2018). Optimization of lactic acid bacteria viability using fuzzy soft set modelling. An International Journal of Optimization and Control: Theories & Applications, 8(2), 266-275.

Karakas, E., Ozpalamutcu, H. (2019). A genetic algorithm for fuzzy order acceptance and scheduling problem. An International Journal of Optimization and Control: Theories & Applications, 9(2), 186-196.

Fulton, C. T. (1977). Two point boundary value problems with eigenvalue parameter contained in the boundary conditions. Proc. Soc. Edinburg, 77A, 293-308.

Binding, P. A., Browne, P. J., Watson, B. A. (2002). Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter, II. Journal of Computational and Applied Mathematics, 148(1), 147- 168.

Gultekin Citil, H., Altınısık, N. (2017). On the eigenvalues and the eigenfunctions of the Sturm-Liouville fuzzy boundary value problem. Journal of Mathematical and Computational Science, 7(4), 786-805.

Gultekin Citil, H., Altınısık, N. (2018). The examination of eigenvalues and eigenfunctions of the Sturm-Liouville fuzzy problem according to boundary conditions. International Journal of Mathematical Combinatorics, 1, 51-60.

Gultekin Citil, H., Altınısık, N. (2018). The eigenvalues and the eigenfunctions of the Sturm-Liouville fuzzy problem with fuzzy coefficient boundary conditions. Journal of Science and Arts, 4(45), 947-958.

Gultekin Citil, H. (2017). The eigenvalues and the eigenfunctions of the Sturm- Liouville fuzzy boundary value problem according to the generalized differentiability. Scholars Journal of Physics, Mathematics and Statistics, 4(4), 185-195.

Ceylan, T., Altınısık, N. (2018). Eigenvalue problem with fuzzy coefficients of boundary conditions. Scholars Journal of Physics, Mathematics and Statistics, 5(2), 187-193.

Gultekin Citil, H. (2019). Important notes for a fuzzy boundary value problem. Applied Mathematics and Nonlinear Sciences, 4(2), 305–314.

Ceylan, T., Altınısık, N. (2018). Fuzzy eigenvalue problem with eigenvalue parameter contained in the boundary condition. Journal of Science and Arts, 3(44), 589-602.

Gultekin Citil, H. (2019). Sturm-Liouville fuzzy problem with fuzzy eigenvalue parameter. International Journal of Mathematical Modelling & Computations, 9(3), 187- 195.

Liu, H.-K. (2011). Comparison results of twopoint fuzzy boundary value problems. International Journal of Computational and Mathematical Sciences, 5(1), 1-7.

Khastan, A., Nieto, J. J. (2010). A boundary value problem for second order fuzzy differential equations. Nonlinear Analysis, 72, 3583-3593.

Shirin, S., Saha, G. K. (2011). A new computational methodology to find appropriate solutions of fuzzy equations. Mathematical Theory and Modeling, 2(1), 1-10.

Lakshmikantham, V., Mohapatra, R. N. (2003). Theory of Fuzzy Differential Equations and Inclusions. Taylor and Francis, London, New York.

Puri, M. L., Ralescu D. A. (1983). Differentials of fuzzy functions. Journal of Mathematical Analysis and Applications, 91(2), 552-558.

Bede, B. (2008). Note on “Numerical solutions of fuzzy differential equations by predictor-corrector method”. Information Sciences, 178(7), 1917-1922.




DOI: http://dx.doi.org/10.11121/ijocta.01.2020.00947

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Hülya GÜLTEKİN ÇİTİL

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

footer_771

   ithe_170     crossref_284         ind_131_43_x_117_117  Scopus  EBSCO_Host    ULAKBIM     ZBMATH more...